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What is a metric graph?

A metric graph is made of vertices

and of edges joining the vertices or
going to infinity.

∞

∞

∞

metric graphs: the length of edges are important.

the edges going to infinity are halflines and have infinite length.
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Constructions based on halflines

∞
The halfline

∞ ∞
The line

∞

∞

∞

∞

∞

The 5-star graph

∞∞

∞

∞ ∞

∞

The 6-star graph
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Functions defined on metric graphs

G
ff0

e0

f1

e1

f2
e2

f0

f1
f2

A metric graph G with three edges e0 (length 5), e1 (length 4) et e2 (length 3)

, a
function f : G → R, and the three associated real functions.

∫
G

f dx def=
∫ 5

0
f0(x) dx +

∫ 4

0
f1(x) dx +

∫ 3

0
f2(x) dx
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Why studying metric graphs?
Physical motivations

Modeling structures where only one spatial direction is important.

∞
∞

∞

A « fat graph » and the underlying metric graph
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An application: atomtronics

A boson1 is a particle with integer spin.

When identical bosons are cooled down to a temperature very close
to absolute zero, they occupy a unique lowest energy quantum state.
This phenomenon is known at Bose-Einstein condensation.
This is really remarkable: macroscopic quantum phenomenon!
Since 2000: emergence of atomtronics, which studies circuits guiding
the propagation of ultracold atoms.

1Here we will consider composite bosons, like atoms.
Damien Galant On the notion of “ground state” for NLS 7



Metric graphs NLS Ground states Some proof techniques

An application: atomtronics

A boson1 is a particle with integer spin.
When identical bosons are cooled down to a temperature very close
to absolute zero, they occupy a unique lowest energy quantum state.

This phenomenon is known at Bose-Einstein condensation.
This is really remarkable: macroscopic quantum phenomenon!
Since 2000: emergence of atomtronics, which studies circuits guiding
the propagation of ultracold atoms.

1Here we will consider composite bosons, like atoms.
Damien Galant On the notion of “ground state” for NLS 7



Metric graphs NLS Ground states Some proof techniques

An application: atomtronics

A boson1 is a particle with integer spin.
When identical bosons are cooled down to a temperature very close
to absolute zero, they occupy a unique lowest energy quantum state.
This phenomenon is known at Bose-Einstein condensation.

This is really remarkable: macroscopic quantum phenomenon!
Since 2000: emergence of atomtronics, which studies circuits guiding
the propagation of ultracold atoms.

1Here we will consider composite bosons, like atoms.
Damien Galant On the notion of “ground state” for NLS 7



Metric graphs NLS Ground states Some proof techniques

An application: atomtronics

A boson1 is a particle with integer spin.
When identical bosons are cooled down to a temperature very close
to absolute zero, they occupy a unique lowest energy quantum state.
This phenomenon is known at Bose-Einstein condensation.
This is really remarkable: macroscopic quantum phenomenon!

Since 2000: emergence of atomtronics, which studies circuits guiding
the propagation of ultracold atoms.

1Here we will consider composite bosons, like atoms.
Damien Galant On the notion of “ground state” for NLS 7



Metric graphs NLS Ground states Some proof techniques

An application: atomtronics

A boson1 is a particle with integer spin.
When identical bosons are cooled down to a temperature very close
to absolute zero, they occupy a unique lowest energy quantum state.
This phenomenon is known at Bose-Einstein condensation.
This is really remarkable: macroscopic quantum phenomenon!
Since 2000: emergence of atomtronics, which studies circuits guiding
the propagation of ultracold atoms.

1Here we will consider composite bosons, like atoms.
Damien Galant On the notion of “ground state” for NLS 7



Metric graphs NLS Ground states Some proof techniques

The minimization problem

We model the circuit in which the condensate is confined by a metric
graph G.

We want to know what will be the common quantum state of a
condensate confined in G for a given “quantity of matter” µ.
We work on the space

H1
µ(G) =

{
u : G → R

∣∣∣ u is continuous, u, u′ ∈ L2(G),
∫

G
|u|2 = µ

}
and we consider the energy minimization problem

inf
u∈H1

µ(G)

1
2

∫
G

|u′|2 − 1
p

∫
G

|u|p,

where 2 < p < 6 (Bose-Einstein: p = 4).
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Infimum vs minimum

−10 −5 5 10

1

2

3

4

5

f (x) = 1
|x |

Then
inf
R

f = 0

but the infimum is not attained (i.e. is not a minimum).
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The differential system

If a function u ∈ H1
µ(G) minimizes the energy functional under the mass

constraint, there exists a constant λ > 0 such that u is a solution of the
differential system



u′′ + |u|p−2u = λu on each edge e of G,

u is continuous for every vertex v of G,∑
e≻v

du
dxe

(v) = 0 for every vertex v of G,

(NLS)

where the symbol e ≻ v means that the sum ranges over all edges of
vertex v and where du

dxe
(v) is the outgoing derivative of u at v.

Damien Galant On the notion of “ground state” for NLS 10



Metric graphs NLS Ground states Some proof techniques

The differential system

If a function u ∈ H1
µ(G) minimizes the energy functional under the mass

constraint, there exists a constant λ > 0 such that u is a solution of the
differential system

u′′ + |u|p−2u = λu on each edge e of G,

u is continuous for every vertex v of G,∑
e≻v

du
dxe

(v) = 0 for every vertex v of G,

(NLS)

where the symbol e ≻ v means that the sum ranges over all edges of
vertex v and where du

dxe
(v) is the outgoing derivative of u at v.

Damien Galant On the notion of “ground state” for NLS 10



Metric graphs NLS Ground states Some proof techniques

The differential system

If a function u ∈ H1
µ(G) minimizes the energy functional under the mass

constraint, there exists a constant λ > 0 such that u is a solution of the
differential system

u′′ + |u|p−2u = λu on each edge e of G,

u is continuous for every vertex v of G,

∑
e≻v

du
dxe

(v) = 0 for every vertex v of G,

(NLS)

where the symbol e ≻ v means that the sum ranges over all edges of
vertex v and where du

dxe
(v) is the outgoing derivative of u at v.

Damien Galant On the notion of “ground state” for NLS 10



Metric graphs NLS Ground states Some proof techniques

The differential system

If a function u ∈ H1
µ(G) minimizes the energy functional under the mass

constraint, there exists a constant λ > 0 such that u is a solution of the
differential system

u′′ + |u|p−2u = λu on each edge e of G,

u is continuous for every vertex v of G,∑
e≻v

du
dxe

(v) = 0 for every vertex v of G,

(NLS)

where the symbol e ≻ v means that the sum ranges over all edges of
vertex v and where du

dxe
(v) is the outgoing derivative of u at v.

Damien Galant On the notion of “ground state” for NLS 10



Metric graphs NLS Ground states Some proof techniques

The differential system

If a function u ∈ H1
µ(G) minimizes the energy functional under the mass

constraint, there exists a constant λ > 0 such that u is a solution of the
differential system

u′′ + |u|p−2u = λu on each edge e of G,

u is continuous for every vertex v of G,∑
e≻v

du
dxe

(v) = 0 for every vertex v of G,

(NLS)

where the symbol e ≻ v means that the sum ranges over all edges of
vertex v and where du

dxe
(v) is the outgoing derivative of u at v.

Damien Galant On the notion of “ground state” for NLS 10



Metric graphs NLS Ground states Some proof techniques

Outgoing derivatives

x1
∞ ∞
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The real line: G = R

∞ ∞

Sµ(R) =
{

±φµ(x + a)
∣∣∣ a ∈ R

}
where the soliton φµ is the unique strictly positive, even, and of mass µ
solution to an equation of the form

u′′ + |u|p−2u = λu.

Damien Galant On the notion of “ground state” for NLS 12
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The halfline: G = R+ = [0, +∞[

∞

Sµ(R+) =
{

±φ2µ(x)|R+

}
Solutions are half-solitons: no more translations!

Damien Galant On the notion of “ground state” for NLS 13
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The positive solution on the 3-star graph
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The positive solution on the 5-star graph
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A continuous family of solutions on the 4-star graph
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Two energy levels

The « ground state » energy level is given by

cµ(G) = inf
u∈H1

µ(G)

1
2

∫
G

|u′|2 − 1
p

∫
G

|u|p.

A ground state is a function u ∈ H1
µ(G) with level cµ(G). It is a

solution of the differential system (NLS).
We can also consider the minimal level attained by the solutions of
(NLS):

σµ(G) = inf
u∈Sµ(G)

1
2

∫
G

|u′|2 − 1
p

∫
G

|u|p.

A minimal action solution of the problem is a solution u ∈ Sµ(G) of
the differential problem (NLS) of level σµ(G).

Damien Galant On the notion of “ground state” for NLS 17
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Cutting solitons on long edges or halflines

Proposition
Assume that G has arbitrarily long edges (for instance, if G has at least
one halfline). Then,

cµ(G) ≤ sµ := 1
2

∫
G

|φ′
µ|2 − 1

p

∫
G

|φµ|p.

Proof.

G
∞

u
e0

e1

e2

Damien Galant On the notion of “ground state” for NLS 18
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Four cases

For a N-star graph with N ≥ 3, we have

sµ = cµ(G) < σµ(G) = N
2 sµ.

An analysis shows that four cases are possible:
A1) cµ(G) = σµ(G) and both infima are attained;
A2) cµ(G) = σµ(G) and neither infima is attained;
B1) cµ(G) < σµ(G), σµ(G) is attained but not cµ(G);
B2) cµ(G) < σµ(G) and neither infima is attained.

Question
Are those four cases really possible for metric graphs?

Damien Galant On the notion of “ground state” for NLS 19
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Answer to the question

Theorem (De Coster, Dovetta, G., Serra (to appear))
For every p ∈ ]2, 6[, every µ > 0, and every choice of alternative between
A1, A2, B1, B2, there exists a metric graph G where this alternative
occurs.
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Case A1
cµ(G) = σµ(G) and both infima are attained

Compact graphs

∞ ∞
The line

∞
The halfline

∞ ∞
The line with one pendant
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Case B1
cµ(G) < σµ(G), σµ(G) is attained but not cµ(G)

∞

∞

∞

∞

∞

∞∞

∞

∞ ∞

∞

N-star graphs, N ≥ 3
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Case A2
cµ(G) = σµ(G) and neither infima is attained

∞
v1

L1

v2

L2

v3

L3

v4

L4

v5

L5

v6

L6

· · ·· · ·· · ·· · ·· · ·· · ·· · ·

· · ·
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Case B2
cµ(G) < σµ(G) and neither infima is attained

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞ ∞

v0 v1 v2 v3v−1v−2v−3

L1 L2 L3L−1L−2L−3

B

R−3 R−2 R−1 R0 R1 R2 R3
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A first existence result

Theorem (Adami, Serra, Tilli 2014)
Let G be a metric graph with finitely many edges, including at least one
halfline. Assume that

cµ(G) < sµ.

Then cµ(G) is attained, which means that there exists a ground state, so
we are in case A1: cµ(G) = σµ(G), both attained.

Example:

∞ ∞

The line with one pendant
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Decreasing rearrangement on the halfline

G
u

e0

e1

e2

u∗

Fundamental property: for all t > 0,

measG({x ∈ G, u(x) > t}) = measR+({x ∈ R+, u∗(x) > t}).

Consequence: for all 1 ≤ p ≤ +∞,

∥u∥Lp(G) = ∥u∗∥Lp(R+).
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The Pólya–Szegő inequality

Theorem
Let u ∈ H1(G) be a nonnegative function. Then its decreasing
rearrangement u∗ belongs to H1(0, |G|), and one has

∥(u∗)′∥L2(0,|G|) ≤ ∥u′∥L2(G).

Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics
Annals of Mathematics Studies. Princeton, N.J. Princeton University
Press. (1951).

Duff, G. Integral Inequalities for Equimeasurable Rearrangements,
Canadian Journal of Mathematics 22 (1970), no. 2, 408–430.

Friedlander, L. Extremal properties of eigenvalues for a metric graph,
Ann. Inst. Fourier (Grenoble) 55 (2005) no. 1, 199–211.
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The Pólya–Szegő inequality
A simple case: affine functions

We assume that u is piecewise affine.

u

I

ℓ1 ℓ2 ℓ3 ℓ4

u∗

I

ℓ1 + ℓ2 + ℓ3 + ℓ4

We consider a small open interval I ⊆ u(G) so that u−1(I) consists of a
disjoint union of open intervals on which u is affine.
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The Pólya–Szegő inequality
A simple case: affine functions

Original contribution to ∥u′∥2
L2 :

A := ℓ1
|I|2

ℓ2
1

+ ℓ2
|I|2

ℓ2
2

+ ℓ3
|I|2

ℓ2
3

+ ℓ4
|I|2

ℓ2
4

= |I|2
ℓ1

+ |I|2
ℓ2

+ |I|2
ℓ3

+ |I|2
ℓ4

Contribution to ∥(u∗)′∥2
L2 :

B := |I|2
ℓ1 + ℓ2 + ℓ3 + ℓ4

Inequality between arithmetic and harmonic means:

ℓ1 + ℓ2 + ℓ3 + ℓ4
4 ≥ 4

1
ℓ1

+ 1
ℓ2

+ 1
ℓ3

+ 1
ℓ4

⇒ A ≥ 42B ≥ B.
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A refined Pólya–Szegő inequality...
... or the importance of the number of preimages

Theorem
Let u ∈ H1(G) be a nonnegative function. Let N ≥ 1 be an integer.
Assume that, for almost every t ∈ ]0, ∥u∥∞[, one has

u−1({t}) =
{
x ∈ G | u(x) = t

}
≥ N.

Then one has
∥(u∗)′∥L2(0,|G|) ≤ 1

N2 ∥u′∥L2(G).
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Assumption (H)

Definition (Adami, Serra, Tilli 2014)
We say that a metric graph G satisfies assumption (H) if, for every point
x0 ∈ G, there exist two injective curves γ1, γ2 : [0, +∞[ → G parameterized
by arclength, with disjoint images except for an at most countable number
of points, and such that γ1(0) = γ2(0) = x0.

∞ ∞
x0

Consequence: all nonnegative H1(G) functions have at least two preimages
for almost every t ∈ ]0, ∥u∥∞[.
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Non-existence of ground states

Theorem (Adami, Serra, Tilli 2014)
If a metric graph G has at least one halfline and satisfies assumption (H),
then

cµ(G) := inf
u∈H1

µ(G)
E (u) = sµ

but it is never achieved

, unless G is isometric to one of the exceptional
graphs depicted in the next few slides.
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Non-existence of ground states
Exceptional graphs: the real line

x1
∞ ∞
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Non-existence of ground states
Exceptional graphs: the real line with a tower of circles

xn
∞∞

xn−1

x1

x2...
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A doubly constrained variational problem
Compactness

We define
Xe :=

{
u ∈ H1(G) | ∥u∥L∞(G) = ∥u∥L∞(e)

}
where e is a given bounded edge of G

and we consider the
doubly–constrained minimization problem

cµ(G, e) := inf
u∈H1

µ(G)∩Xe
E (u).

Theorem
There exists R > 0 depending only on µ and p such that, if G satisfies
assumption (H) with a bounded edge e of length R ≥ R, then cµ(G, e) is
attained.
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A doubly constrained variational problem
An existence result

Theorem
Let G satisfy assumption (H) with a bounded edge e of length R and
ℓ0 ≤ inf

e∈E
|e|. There exists R̃ ≥ R (with R given by the previous Theorem)

depending only on ℓ0, µ and p such that if R ≥ R̃ and u is a minimizer for
cµ(G, e), then u ∈ Sµ(G) and u > 0 or u < 0 on G. Moreover,

∥u∥L∞(e) > ∥u∥L∞(G\e).

Damien Galant On the notion of “ground state” for NLS 36



Metric graphs NLS Ground states Some proof techniques

What’s going on in case A2?
cµ(G) = σµ(G) and neither infima is attained

∞
v1

L1

v2

L2

v3

L3

v4

L4

v5

L5

v6

L6

· · ·· · ·· · ·· · ·· · ·· · ·· · ·

· · ·
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What’s going on in case A2?
Using the previous results

Since G has at least one halfline and satisfies assumption (H), one has
cµ(G) = sµ and the infimum is not attained (as G does not belong to
the class of exceptional graphs).

Cutting solitons on the loops, one sees that

cµ(G, Ln) −−−→
n→∞

sµ

According to the Theorems from the two previous slides, cµ(G, Ln) is
attained by a solution of (NLS) for every n large enough.
One obtains

sµ = cµ(G) ≤ σµ(G) ≤ lim inf
n→∞

cµ(G, Ln) = sµ,

so
cµ(G) = σµ(G) = sµ

and neither infimum is attained.
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One obtains

sµ = cµ(G) ≤ σµ(G) ≤ lim inf
n→∞

cµ(G, Ln) = sµ,

so
cµ(G) = σµ(G) = sµ

and neither infimum is attained.
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What’s going on in case B2?
cµ(G) < σµ(G) and neither infima is attained

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞ ∞

v0 v1 v2 v3v−1v−2v−3

L1 L2 L3L−1L−2L−3

B

R−3 R−2 R−1 R0 RR̃ R2 R3

The graph GN .

The loops Li have length N and B is made of N edges of length 1.
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What’s going on in case B2?
A second, periodic, graph

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞ ∞

ṽ0 ṽ1 ṽ2 ṽ3ṽ−1ṽ−2ṽ−3

L̃1 L̃2 L̃3L̃−1L̃−2L̃−3 L̃0

R̃−3 R̃−2 R̃−1 R̃0 R̃R̃ R̃2 R̃3

The graph G̃N .

The loops L̃i have length N.
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What’s going on in case B2?
Two problems at infinity

Since GN and G̃N satisfy (H) and contain halflines, one has

sµ = cµ(GN) = cµ(G̃N),

and neither infima is attained.

One can show that, if N is large enough, then σµ(G̃N) is attained
(using the periodicity of G̃N).

Hence σµ(G̃N) > sµ.

One then shows, using suitable rearrangement techniques, that

σµ(GN) = σµ(G̃N),

but that σµ(GN) is not attained.
Therefore, for large N, we have that

sµ = cµ(GN) < σµ(GN),

and neither infima is attained, as claimed.
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Why studying metric graphs?
Mathematical motivations

Main message
Metric graphs allow to study interesting one dimensional problems and are
much richer then the usual class of intervals of R.

Dimension one has many advantages:
“nice” Sobolev embeddings

, H1 functions are continuous;

counting preimages;
ODE techniques;
. . . ;

Replacing G by noncompact smooth open sets Ω ⊆ Rd , d ≥ 2 and H1(G)
by H1(Ω) or H1

0 (Ω), one expects that the four cases A1, A2, B1, B2
actually occur.

However, to this day, it remains on open problem!
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Why p < 6?
Given u ∈ H1(R), one has a one-parameter family of L2-norm preserving
scalings u 7→ ut , where ut(x) := t1/2u(tx). Direct computations show that

∥u′
t∥2

L2 = t2∥u′∥2
L2 , ∥ut∥p

Lp = t
p
2 −1∥u∥p

Lp .

Hence,

E (ut) = 1
2∥u′

t∥2
L2 − 1

p ∥ut∥p
Lp = t2

2 ∥u′
t∥2

L2 − t
p
2 −1

p ∥ut∥p
Lp .

If p > 6, the term with the negative sign wins, hence the energy functional
is not bounded under the mass constraint. For more information about the
p ≥ 6 case, see e.g.

Chang X., Jeanjean L., Soave N. Normalized solutions of
L2-supercritical NLS equations on compact metric graphs
https://arxiv.org/abs/2204.01043 (2022)
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